Introduction to calculation sheets

Arkadiusz Miaskowski, MSc, PhD e-mail:arek.miaskowski@up.lublin.pl Gleboka st. 28, room no 213.

Department of Applied Mathematics and Computer Sciences, University of Life Sciences in Lublin, Poland

Calculations Sheets

- MS Office - Excel
- Libre Office - Calc
- Google - Sheets

Numerical models

The aim: how to investigate such numerical models using calculation sheet!

Newton's law of cooling

$$
\begin{equation*}
T(t)=T_{0}+\left(T_{p}-T_{0}\right) e^{-k t} \tag{1}
\end{equation*}
$$

where T_{0} is the ambient temperature, T_{p} is the initial temperature, k is the constant, t is the time.

Rumor spread in social network

$$
\begin{equation*}
n(t)=N\left(1-e^{-k t}\right) \tag{2}
\end{equation*}
$$

where N is the population, k is the constant, t is the time

Operators

Arithmetic operators

+ (plus sign), - (minus sign), * (asterisk), / (forward slash), \% (percent sign), \bigwedge (caret)

Comparison operators

$=($ equal sign $),>($ greater than sign),$<$ (less than sign), $>=$ (greater than or equal to sign), $<=$ (less than or equal to sign), $<>$ (not equal to sign)

Formulas

Reference operators

Combine ranges of cells for calculations with the following operators.

Reference operator	Meaning	Example
$:$ (colon)	Range operator	B5:B15
, (comma)	Union operator	SUM(B5:B15,D5:D15)
(space)	Intersection operator	B7:D7 C6:C8

Functions examples

To investigate the numerical models (1) and (2) the functions are required!!!

- =SLOPE()

Calculates the slope of the line resulting from linear regression of a dataset.

- = INTERCEPT()

Calculates the y-value at which the line resulting from linear regression of a dataset will intersect the y-axis ($x=0$).

- = LINEST()

Given partial data about a linear trend, calculates various parameters about the ideal linear trend using the least-squares method.

In practice - linear model

i) how to build a dataset automatically, ii) how to use the relative and the absolute address of the cell

Ex. 1

The data in the Table present the velocity of an object in different periods of time. Calculate the acceleration (a) of the object and its initial velocity V_{0}. Hint: $V=V_{0}+a t$

Table: The velocity of an object in different periods of time

time (sec).	2	4	6	8	10
velocity $(\mathrm{m} / \mathrm{s})$	22	42	62	80	100

In practice - "squared" model

Ex. 2

The data in the Table present the results of an experiment of a ball falling down in the oil. Calculate the acceleration - a. Hint: $s=\frac{1}{2} a t^{2}$.

time (sec)	distance (cm)
0	0
0.05	0.3
0.1	1.25
0.15	1.4
0.2	4.6
0.25	7.1
0.3	10
0.35	13.7
0.4	18.1
0.45	22.6
0.5	28

In practice - "exponential" model

Ex. 3
How to consider "exponential" model?

$$
\begin{equation*}
N=C \exp (B t) \tag{3}
\end{equation*}
$$

Calculate C and B parameters for the following data:

Time t(sec.)	2.0	4.0	6.0	8.0	10.0
Population N	2500	6000	15000	35000	90000

